11,159 research outputs found

    Transport parameters in neutron stars from in-medium NN cross sections

    Full text link
    We present a numerical study of shear viscosity and thermal conductivity of symmetric nuclear matter, pure neutron matter and β\beta-stable nuclear matter, in the framework of the Brueckner theory. The calculation of in-medium cross sections and nucleon effective masses is performed with a consistent two and three body interaction. The investigation covers a wide baryon density range as requested in the applications to neutron stars. The results for the transport coefficients in β\beta-stable nuclear matter are used to make preliminary predictions on the damping time scales of non radial modes in neutron stars

    Refining grain structure and porosity of an aluminium alloy with intensive melt shearing

    Get PDF
    The official published version of the article can be obtained at the link below.Intensive melt shearing was achieved using a twin-screw machine to condition an aluminium alloy prior to solidification. The results show that intensive melt shearing has a significant grain-refining effect. In addition, the intensive melt shearing reduces both the volume fraction and the size of porosity. It can reduce the density index from 10.50% to 2.87% and the average size of porosity in the samples solidified under partial vacuum from around 1 mm to 100 μm.Financial support was obtained from the EPSRC and the Technology Strategy Board

    Su(3) Algebraic Structure of the Cuprate Superconductors Model based on the Analogy with Atomic Nuclei

    Full text link
    A cuprate superconductor model based on the analogy with atomic nuclei was shown by Iachello to have an su(3)su(3) structure. The mean-field approximation Hamiltonian can be written as a linear function of the generators of su(3)su(3) algebra. Using algebraic method, we derive the eigenvalues of the reduced Hamiltonian beyond the subalgebras u(1)u(2)u(1)\bigotimes u(2) and so(3)so(3) of su(3)su(3) algebra. In particular, by considering the coherence between s- and d-wave pairs as perturbation, the effects of coherent term upon the energy spectrum are investigated

    Extended quark mean-field model for neutron stars

    Full text link
    We extend the quark mean-field (QMF) model to strangeness freedom to study the properties of hyperons (Λ,Σ,Ξ\Lambda,\Sigma,\Xi) in infinite baryon matter and neutron star properties. The baryon-scalar meson couplings in the QMF model are determined self-consistently from the quark level, where the quark confinement is taken into account in terms of a scalar-vector harmonic oscillator potential. The strength of such confinement potential for u,du,d quarks is constrained by the properties of finite nuclei, while the one for ss quark is limited by the properties of nuclei with a Λ\Lambda hyperon. These two strengths are not same, which represents the SU(3) symmetry breaking effectively in the QMF model. Also, we use an enhanced Σ\Sigma coupling with the vector meson, and both Σ\Sigma and Ξ\Xi hyperon potentials can be properly described in the model. The effects of the SU(3) symmetry breaking on the neutron star structures are then studied. We find that the SU(3) breaking shifts earlier the hyperon onset density and makes hyperons more abundant in the star, in comparisons with the results of the SU(3) symmetry case. However, it does not affect much the star's maximum mass. The maximum masses are found to be 1.62M1.62 M_{\odot} with hyperons and 1.88M1.88 M_{\odot} without hyperons. The present neutron star model is shown to have limitations on explaining the recently measured heavy pulsar.Comment: 7 pages, 7 figures, Phys. Rev. C (2014) accepte

    Nuclear Three-body Force Effect on a Kaon Condensate in Neutron Star Matter

    Get PDF
    We explore the effects of a microscopic nuclear three-body force on the threshold baryon density for kaon condensation in chemical equilibrium neutron star matter and on the composition of the kaon condensed phase in the framework of the Brueckner-Hartree-Fock approach. Our results show that the nuclear three-body force affects strongly the high-density behavior of nuclear symmetry energy and consequently reduces considerably the critical density for kaon condensation provided that the proton strangeness content is not very large. The dependence of the threshold density on the symmetry energy becomes weaker as the proton strangeness content increases. The kaon condensed phase of neutron star matter turns out to be proton-rich instead of neutron-rich. The three-body force has an important influence on the composition of the kaon condensed phase. Inclusion of the three-body force contribution in the nuclear symmetry energy results in a significant reduction of the proton and kaon fractions in the kaon condensed phase which is more proton-rich in the case of no three-body force. Our results are compared to other theoretical predictions by adopting different models for the nuclear symmetry energy. The possible implications of our results for the neutron star structure are also briefly discussed.Comment: 15 pages, 5 figure

    Spin Polarized Asymmetric Nuclear Matter and Neutron Star Matter Within the Lowest Order Constrained Variational Method

    Full text link
    In this paper, we calculate properties of the spin polarized asymmetrical nuclear matter and neutron star matter, using the lowest order constrained variational (LOCV) method with the AV18AV_{18}, Reid93Reid93, UV14UV_{14} and AV14AV_{14} potentials. According to our results, the spontaneous phase transition to a ferromagnetic state in the asymmetrical nuclear matter as well as neutron star matter do not occur.Comment: 21 pages, 11 figure

    Benzo[a]pyrene-induced DNA adducts and gene expression profiles in target and non-target organs for carcinogenesis in mice

    Get PDF
    Background: Gene expression changes induced by carcinogens may identify differences in molecular function between target and non-target organs. Target organs for benzo[a]pyrene (BaP) carcinogenicity in mice (lung, spleen and forestomach) and three non-target organs (liver, colon and glandular stomach) were investigated for DNA adducts by 32P-postlabelling, for gene expression changes by cDNA microarray and for miRNA expression changes by miRNA microarray after exposure of animals to BaP. Results: BaP-DNA adduct formation occurred in all six organs at levels that did not distinguish between target and non-target. cDNA microarray analysis showed a variety of genes modulated significantly by BaP in the six organs and the overall gene expression patterns were tissue specific. Gene ontology analysis also revealed that BaP-induced bioactivities were tissue specific; eight genes (Tubb5, Fos, Cdh1, Cyp1a1, Apc, Myc, Ctnnb1 and Cav) showed significant expression difference between three target and three non-target organs. Additionally, several gene expression changes, such as in Trp53 activation and Stat3 activity suggested some similarities in molecular mechanisms in two target organs (lung and spleen), which were not found in the other four organs. Changes in miRNA expression were generally tissue specific, involving, in total, 21/54 miRNAs significantly up- or down-regulated. Conclusions: Altogether, these findings showed that DNA adduct levels and early gene expression changes did not fully distinguish target from non-target organs. However, mechanisms related to early changes in p53, Stat3 and Wnt/β-catenin pathways may play roles in defining BaP organotropism
    corecore